Part Number Hot Search : 
SWSS0 HCT2G U7SH0211 39V040 STTH2002 FM206 55547 TDA7443D
Product Description
Full Text Search
 

To Download APT75GN120JDQ3 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  050-7618 rev b 10-2005 APT75GN120JDQ3 typical performance curves maximum ratings all ratings: t c = 25c unless otherwise speci?ed. static electrical characteristics characteristic / test conditionscollector-emitter breakdown voltage (v ge = 0v, i c = 3ma) gate threshold voltage (v ce = v ge , i c = 3ma, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 75a, t j = 25c) collector-emitter on voltage (v ge = 15v, i c = 75a, t j = 125c) collector cut-off current (v ce = 1200v, v ge = 0v, t j = 25c) 2 collector cut-off current (v ce = 1200v, v ge = 0v, t j = 125c) 2 gate-emitter leakage current (v ge = 20v) intergrated gate resistor symbol v (br)ces v ge(th) v ce(on) i ces i ges r g(int) units volts ana ? symbol v ces v ge i c1 i c2 i cm ssoa p d t j ,t stg t l APT75GN120JDQ3 1200 30 124 57 225 225a @ 1200v 379 -55 to 150 300 unit volts amps watts c parametercollector-emitter voltage gate-emitter voltage continuous collector current @ t c = 25c continuous collector current @ t c = 110c pulsed collector current 1 switching safe operating area @ t j = 150c total power dissipationoperating and storage junction temperature range max. lead temp. for soldering: 0.063" from case for 10 sec. apt website - http://www.advancedpower.com caution: these devices are sensitive to electrostatic discharge. proper hand ling procedures should be followed. utilizing the latest field stop and trench gate technologies, these igbt's have ultra low v ce(on) and are ideal for low frequency applications that require absolute minimum conduction loss. easy paralleling is a result of very tight parameter distribution and a slightly positive v ce(on) temperature coef?cient. a built-in gate resistor ensures extremely reliable operation, even in the event of a short circuit fault. low gate charge simpli?es gate drive design and minimizes losses. ? 1200v field stop ? trench gate: low v ce(on) ? easy paralleling ? intergrated gate resistor: low emi, high reliability applications : welding, inductive heating, solar inverters, smps, motor drives, ups min typ max 1200 5.0 5.8 6.5 1.4 1.7 2.1 2.0 200 tbd 600 10 ? 1200v APT75GN120JDQ3 s o t - 2 2 7 isotop ? file # e145592 "ul recognized" g e e c c e g downloaded from: http:///
050-7618 rev b 10-2005 APT75GN120JDQ3 1 repetitive rating: pulse width limited by maximum junction temperature. 2 for combi devices, i ces includes both igbt and fred leakages 3 see mil-std-750 method 3471. 4 e on1 is the clamped inductive turn-on energy of the igbt only, without the effect of a commutating diode reverse recovery current adding to the igbt turn-on loss. tested in inductive switching test circuit shown in ?gure 21, but with a silicon carbide diode.5 e on2 is the clamped inductive turn-on energy that includes a commutating diode reverse recovery current in the igbt turn-on switching loss. (see figures 21, 22.) 6 e off is the clamped inductive turn-off energy measured in accordance with jedec standard jesd24-1. (see figures 21, 23.) 7 r g is external gate resistance, not including r g(int) nor gate driver impedance. (mic4452) apt reserves the right to change, without notice, the speci?cations and information contained herein . dynamic characteristics symbol c ies c oes c res v gep q g q ge q gc ssoa t d(on) t r t d(off) t f e on1 e on2 e off t d(on) t r t d(off) t f e on1 e on2 e off test conditions capacitance v ge = 0v, v ce = 25v f = 1 mhz gate charge v ge = 15v v ce = 600v i c = 75a t j = 150c, r g = 4.3 ? 7 , v ge = 15v, l = 100h,v ce = 1200v inductive switching (25c) v cc = 800v v ge = 15v i c = 75a r g = 1.0 ? 7 t j = +25c inductive switching (125c) v cc = 800v v ge = 15v i c = 75a r g = 1.0 ? 7 t j = +125c characteristicinput capacitance output capacitance reverse transfer capacitance gate-to-emitter plateau voltage total gate charge 3 gate-emitter charge gate-collector ("miller ") charge switching safe operating area turn-on delay time current rise time turn-off delay time current fall time turn-on switching energy 4 turn-on switching energy (diode) 5 turn-off switching energy 6 turn-on delay timecurrent rise time turn-off delay time current fall time turn-on switching energy 4 4 turn-on switching energy (diode) 5 5 turn-off switching energy 6 6 min typ max 4800 275 210 9.0 425 30 245 225 60 41 620 110 8045 9620 7640 60 41 725 200 8620 13000 11400 unit pf v nc a ns j ns j thermal and mechanical characteristics unit c/w gm volts min typ max .33 .56 29.2 2500 characteristicjunction to case (igbt) junction to case (diode) package weightrms voltage (50-60hhz sinusoidal wavefomr ffrom terminals to mounting base for 1 min.) symbol r jc r jc w t v isolation downloaded from: http:///
050-7618 rev b 10-2005 APT75GN120JDQ3 typical performance curves v gs(th) , threshold voltage v ce , collector-to-emitter voltage (v) i c , collector current (a) i c , collector current (a) (normalized) i c, dc collector current(a) v ce , collector-to-emitter voltage (v) v ge , gate-to-emitter voltage (v) i c , collector current (a) 250s pulse test<0.5 % duty cycle 160140 120 100 8060 40 20 0 160140 120 100 8060 40 20 0 3.53.0 2.5 2.0 1.5 1.0 0.5 0 1.151.10 1.05 1.00 0.95 0.90 0.85 0.80 0.75 0.70 0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0 2 4 6 8 10 12 14 16 0 2 4 6 8 10 12 14 0 100 200 300 400 500 8 10 12 14 16 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 -50 -25 0 25 50 75 100 125 150 160140 120 100 8060 40 20 0 1614 12 10 86 4 2 0 3.53.0 2.5 2.0 1.5 1.0 0.5 0 200180 160 140 120 100 8060 40 20 0 v ce , collecter-to-emitter voltage (v) v ce , collecter-to-emitter voltage (v) figure 1, output characteristics(t j = 25c) figure 2, output characteristics (t j = 125c) v ge , gate-to-emitter voltage (v) gate charge (nc) figure 3, transfer characteristics figure 4, gate charge v ge , gate-to-emitter voltage (v) t j , junction temperature (c) figure 5, on state voltage vs gate-to- emitter voltage figure 6, on state voltage vs junction tem perature t j , junction temperature (c) t c , case temperature (c) figure 7, threshold voltage vs. junction temperature figure 8, dc collector current vs case temper ature 13 &15v 11v 10v 9v 12v 8v 7v v ge = 15v. 250s pulse test <0.5 % duty cycle t j = 125c t j = 25c t j = -55c t j = 125c t j = 25c t j = -55c v ge = 15v v ce = 960v v ce = 600v v ce = 240v i c = 75a t j = 25c t j = 25c. 250s pulse test <0.5 % duty cycle i c = 150a i c = 75a i c = 37.5a i c = 150a i c = 75a i c = 37.5a downloaded from: http:///
050-7618 rev b 10-2005 APT75GN120JDQ3 v ge =15v,t j =125c v ge =15v,t j =25c v ce = 800v r g = 1.0 ? l = 100h switching energy losses (j) e on2 , turn on energy loss (j) t r, rise time (ns) t d(on) , turn-on delay time (ns) switching energy losses (j) e off , turn off energy loss (j) t f, fall time (ns) t d (off) , turn-off delay time (ns) i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 9, turn-on delay time vs collector current figure 10, turn-off delay time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 11, current rise time vs collector current figure 12, current fall time vs collector curre nt i ce , collector to emitter current (a) i ce , collector to emitter current (a) figure 13, turn-on energy loss vs collector current figure 14, turn off energy loss vs collector current r g , gate resistance (ohms) t j , junction temperature (c) figure 15, switching energy losses vs. gate resistance figure 16, switching energy losses vs junc tion temperature v ce = 800v v ge = +15v r g = 1.0 ? r g = 1.0 ? , l = 100 h, v ce = 800v v ce = 800v t j = 25c , or =125c r g = 1.0 ? l = 100h 7060 50 40 30 20 10 0 180160 140 120 100 8060 40 20 0 5000040000 30000 20000 10000 0 100000 8000060000 40000 20000 0 800700 600 500 400 300 200 100 0 300250 200 150 100 50 0 2500020000 15000 10000 5000 0 5000040000 30000 20000 10000 0 v ge = 15v t j = 125c, v ge = 15v t j = 25 or 125c,v ge = 15v t j = 25c, v ge = 15v t j = 125c t j = 25c v ce = 800v v ge = +15v r g = 1.0 ? t j = 125c t j = 25c 10 40 70 100 130 160 10 40 70 100 130 160 10 40 70 100 130 160 10 40 70 100 130 160 10 40 70 100 130 160 10 40 70 100 130 160 0 10 20 30 40 50 0 25 50 75 100 125 r g = 1.0 ? , l = 100 h, v ce = 800v e on2, 150a e off, 150a v ce = 800v v ge = +15v t j = 125c e on2, 75a e off, 75a e on2, 37.5a e off, 37.5a v ce = 800v v ge = +15v r g = 1.0 ? e on2, 150a e off, 150a e on2, 75a e off, 75a e on2, 37.5a e off, 37.5a downloaded from: http:///
050-7618 rev b 10-2005 APT75GN120JDQ3 typical performance curves 0.350.30 0.25 0.20 0.15 0.10 0.05 0 z jc , thermal impedance (c/w) 0.3 d = 0.9 0.7 single pulse rectangular pulse duration (seconds) figure 19a, maximum effective transient thermal impedance, junction-to-case vs pulse duration 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 10 6,0001,000 500100 250200 150 100 50 0 c, capacitance ( p f) i c , collector current (a) v ce , collector-to-emitter voltage (volts) v ce , collector to emitter voltage figure 17, capacitance vs collector-to-emitter voltage figure 18,minimim switching safe operatin g area 0 10 20 30 40 50 0 200 400 600 800 1000 1200 1400 figure 19b, transient thermal impedance model 10 20 30 40 50 60 70 80 90 100 110 120 f max , operating frequency (khz) i c , collector current (a) figure 20, operating frequency vs collector current t j = 125 c t c = 75 c d = 50 %v ce = 800v r g = 1.0 ? 4010 51 0.5 0.1 0.05 f max = min (f max , f max2 ) 0.05 f max1 = t d(on) + t r + t d(off) + t f p diss - p cond e on2 + e off f max2 = p diss = t j - t c r jc peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: c res c ies c oes 0.0820 0.214 0.0335 0.00977 0.227 6.33 power (watts) junction temp. ( c) rc model case temperature. ( c) downloaded from: http:///
050-7618 rev b 10-2005 APT75GN120JDQ3 i c a d.u.t. v ce figure 21, inductive switching test circuit v cc figure 22, turn-on switching waveforms and de?nitions figure 23, turn-off switching waveforms and de?nitions t j = 125c collector current collector voltage gate voltage switching energy 5% 10% t d(on) 90% 10% t r 5% t j = 125c collector voltage collector current gate voltage switching energy 0 90% t d(off) 10% t f 90% apt60dq120 downloaded from: http:///
050-7618 rev b 10-2005 APT75GN120JDQ3 typical performance curves characteristic / test conditionsmaximum average forward current (t c = 85c, duty cycle = 0.5) rms forward current (square wave, 50% duty)non-repetitive forward surge current (t j = 45c, 8.3ms) symbol i f (av) i f (rms) i fsm symbol v f characteristic / test conditions i f = 75a forward voltage i f = 150a i f = 75a, t j = 125c static electrical characteristics unit amps unit volts min typ max 2.8 3.48 2.17 APT75GN120JDQ3 6073 540 dynamic characteristics maximum ratings all ratings: t c = 25c unless otherwise speci?ed. ultrafast soft recovery anti-parallel diode min typ max - - 60 - 265 - 560 - 5 - - 350 - 2890 - 13 - - 150 - 4720 - - 40 unit ns nc amps ns nc amps ns nc amps characteristicreverse recovery time reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current reverse recovery time reverse recovery charge maximum reverse recovery current symbol t rr t rr q rr i rrm t rr q rr i rrm t rr q rr i rrm test conditions i f = 60a, di f /dt = -200a/ s v r = 800v, t c = 25 c i f = 60a, di f /dt = -200a/ s v r = 800v, t c = 125 c i f = 60a, di f /dt = -1000a/ s v r = 800v, t c = 125 c i f = 1a, di f /dt = -100a/ s, v r = 30v, t j = 25 c figure 25b, transient thermal impedance model z jc , thermal impedance (c/w) 10 -5 10 -4 10 -3 10 -2 10 -1 1.0 rectangular pulse duration (seconds) figure 25a. maximum effective transient thermal impedance, junction-to-case vs. pulse duration 0.600.50 0.40 0.30 0.20 0.10 0 0.5 single pulse 0.1 0.3 0.7 d = 0.9 0.05 peak t j = p dm x z jc + t c duty factor d = t 1 / t 2 t 2 t 1 p dm note: 0.1480.238 0.174 0.0060.0910 0.524 power (watts) junction temp. ( c) rc model case temperature. ( c) downloaded from: http:///
050-7618 rev b 10-2005 APT75GN120JDQ3 400350 300 250 200 150 100 50 0 5045 40 35 30 25 20 15 10 50 duty cycle = 0.5 t j = 175 c 9080 70 60 50 40 30 20 10 0 t j , junction temperature ( c) case temperature ( c) figure 30. dynamic parameters vs. junction temperature figure 31. maximum average fo rward current vs. casetemperature v r , reverse voltage (v) figure 32. junction capacitance vs. reverse voltage 200180 160 140 120 100 8060 40 20 0 70006000 5000 4000 3000 2000 1000 0 q rr , reverse recovery charge i f , forward current (nc) (a) i rrm , reverse recovery current t rr , reverse recovery time (a) (ns) t j = 125 c v r = 800v t j = 125 c v r = 800v t j = 125 c v r = 800v t j = 175 c t j = -55 c t j = 25 c t j = 125 c 0 1 2 3 4 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 30a 60a 120a 120a 30a 60a t rr q rr q rr t rr i rrm 1.21.0 0.8 0.6 0.4 0.2 0.0 350300 250 200 150 100 50 0 c j , junction capacitance k f , dynamic parameters (pf) (normalized to 1000a/ s) i f(av) (a) 0 25 50 75 100 125 150 25 50 75 100 125 150 175 1 10 100 200 120a 60a 30a v f , anode-to-cathode voltage (v) -di f /dt, current rate of change(a/ s) figure 26. forward current vs. forward voltage figure 27. reverse recovery time vs. current rate of change -di f /dt, current rate of change (a/ s) -di f /dt, current rate of change (a/ s) figure 28. reverse recovery charge vs. current rate of change figure 29. reverse recovery cu rrent vs. current rate of change downloaded from: http:///
050-7618 rev b 10-2005 APT75GN120JDQ3 typical performance curves sot-227 (isotop ? ) package outline i sotop ? is a registered trademark of sgs thomson. 31.5 (1.240)31.7 (1.248) dimensions in millimeters and (inches) 7.8 (.307)8.2 (.322) 30.1 (1.185)30.3 (1.193) 38.0 (1.496)38.2 (1.504) 14.9 (.587)15.1 (.594) 11.8 (.463)12.2 (.480) 8.9 (.350)9.6 (.378) hex nut m4 (4 places) 0.75 (.030)0.85 (.033) 12.6 (.496)12.8 (.504) 25.2 (0.992)25.4 (1.000) 1.95 (.077)2.14 (.084) * emitter/anode collector/cathode gate * r = 4.0 (.157) (2 places) 4.0 (.157)4.2 (.165) (2 places) w=4.1 (.161)w=4.3 (.169) h=4.8 (.187)h=4.9 (.193) (4 places) 3.3 (.129)3.6 (.143) * emitter/anode emitter/anode terminals are shorted internally. current handling capability is equal for either emitter/anode terminal. apt10035lll 4 3 1 2 5 5 zero 1 2 3 4 di f /dt - rate of diode current change through zero crossing. i f - forward conduction current i rrm - maximum reverse recovery current. t rr - reverse r ecovery time, measured from zero crossing where diode q rr - area under the curve defined by i rrm and t rr . current goes from positive to negative, to the point at which the straight line through i rrm and 0.25 i rrm passes through zero. figure 32. diode test circuit figure 33, diode reverse recovery waveform and definitions 0.25 i rrm pearson 2878 current transformer di f /dt adjust 30 h d.u.t. +18v 0v v r t rr / q rr waveform downloaded from: http:///


▲Up To Search▲   

 
Price & Availability of APT75GN120JDQ3

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X